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Abstract. We propose a novel scheme for light amplification and gain equalization by quantum interference.
We find that the laser amplification can be observed at three specific probe frequencies in a four-level
system. Furthermore, we show that three gain peaks can be combined into one to obtain gain equalization.

PACS. 42.50.Gy Effects of atomic coherence on propagation, absorption, and amplification of light; electro-
magnetically induced transparency and absorption – 42.50.Hz Strong-field excitation of optical transitions
in quantum systems; multiphoton processes; dynamic Stark shift

1 Introduction

Quantum interference resulting from indistinguishable
quantum transition pathways leads to many atomic co-
herence effects, such as electromagnetically induced trans-
parency (EIT) [1,2], and amplification without inver-
sion [3–6]. The essence of EIT is that atomic coherence is
induced in a multilevel system by a strong coupling laser
field, which alters the response of the system to a probe
laser field. Under the right circumstances, the absorption
of a weak probe beam at the resonance frequency can be
substantially reduced. The addition of incoherent pump-
ing may lead to amplification with or without inversion,
which has been achieved experimentally [3,7,8] in many
different schemes.

In usual light amplification, the gain coefficient varies
dramatically with the wavelength of the probe laser
field. However, this variation is an obstacle in high-speed
wavelength-division multiplexing system. Thus equaliza-
tion of the gain coefficient is very important. In order to
achieve gain equalization, Zhang et al. [9] have proposed a
method using quantum interference in EDFA, in which the
probe laser field passes through three Er3+-doped ZrF4-
BaF2-LaF3-AlF3-NaF (ZBLAN) optical fibers with dif-
ferent coherent fields and incoherent pumping. We ob-
tain gain equalization in this paper without any assistant
equipment such as the three optical-fibers used by Zhang
et al.

We propose a theoretical method to achieve light am-
plification and gain equalization using the quantum in-
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terference effect. We consider a four-level system [10]
with a closed interaction contour where the symmet-
ric double-EIT [11] can be observed without incoherent
pumping. If an additional incoherent pumping is applied,
by numerical calculation, we find that the probe laser is
amplified at three different frequencies. Furthermore, with
an appropriate incoherent pumping, three gain become de-
generate as one to achieve gain equalization. Finally, the
separation of the gain frequency of light amplification and
the frequency region of gain equalization can be modified
by the strengths of coherent laser fields and the incoherent
pumping.

This paper is organized as follows: in Section 2, we
obtain the gain (absorption) coefficient of the probe laser
field by solving the density matrix equation of motion. In
Section 3, a few graphic results under specific conditions
are illustrated and analyzed. We focus on both the con-
ditions of full-resonance δ1 = δ2 = δ3 = 0 and the closed
interaction phase Φ = π/2. In Section 4, we give a brief
summary of the results.

2 The model and the density-matrix
equations

The four-level atomic system with a closed interaction
contour considered here is shown in Figure 1. Transi-
tion |4〉 ↔ |3〉 is driven by a weak probe laser field Ep

of frequency ωp with Rabi frequency Ωp = µ43Ep/2�.
A strong coupling laser field E1 of frequency ωc1 with
Rabi frequency Ω1 = µ13E1/2� is applied to transition
|1〉 ↔ |3〉, and another strong coupling laser field E2 of
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Fig. 1. A four-level atomic system with a closed interac-
tion contour connected by three coherent laser fields Ω1, Ωm

and Ω2. An incoherent pump is applied to the probe transition
to obtain probe light amplification and gain equalization. The
transition driven by the probe laser field Ωp is outside of the
closed interaction contour.

frequency ωc2 with Rabi frequency Ωm = µ23E2/2� drives
transition |2〉 ↔ |3〉. Transition |1〉 ↔ |2〉 is coupled by a
microwave field Em of frequency ωm with Rabi frequency
Ωm = µ12E2/2�. In this way, two middle levels |1〉 and |2〉
and the upper level |3〉, connected by a microwave field
and two strong coupling fields respectively, form a closed
interaction contour. Level |3〉 is populated by an inco-
herent pumping process Λ interacting with the transition
|4〉 ↔ |3〉. We suppose that level |1〉 is a metastable state
and the transition |2〉 ↔ |1〉 is forbidden for the electric-
dipole moment. Here µ12 is a magnetic-dipole moment
and µ23, µ13 as well as µ43 are electric-dipole moments.
Here, µij (except µ12) designates the electric-dipole ma-
trix element of transition |i〉 ↔ |j〉 and µ12 is a magnetic-
dipole matrix element of transition |1〉 ↔ |2〉. The upper
level |3〉 exhibits spontaneous decay to the lower level |4〉
and two middle levels |1〉 and |2〉 at the same rate Γ3.

In the interaction picture, with the rotating-wave ap-
proximation and the dipole approximation, the semiclas-
sical interaction Hamiltonian of this four-level atomic sys-
tem can be expressed as:

HI =(δm + δ2 − δ1) |1〉〈1| + δm|2〉〈2|
+ (δm + δ2) |3〉〈3| + (δm + δ2 − δp) |4〉〈4|
− Ω1

[|1〉〈3|eiϕ1 + |3〉〈1|e−iϕ1
]

− Ωp

[|4〉〈3|eiϕp + |3〉〈4|e−iϕp
]

− Ω2

[|2〉〈3|eiϕ2 + |3〉〈2|e−iϕ2
]

− Ωm

[
|1〉〈2|ei(ωt+ϕm) + |2〉〈1|e−i(ωt+ϕm)

]
(1)

where δ1 = (ω3 − ω1) − ωc1, δm = (ω2 − ω1) − ωm,
δ2 = (ω3 − ω2) − ωc2 and δp = (ω3 − ω4) − ωp repre-
sent the detuning and ϕ1, ϕ2, ϕm and ϕp are the phases
corresponding to three coherent laser fields Ω1, Ω2 and
Ωm as well as the weak probe laser field Ωp, respectively.
ω = ωc2 + ωm − ωc1 is defined as the three-photon fre-
quency difference. It is clear that only with the fulfillment
of the three-photon resonance condition, i.e. ω = 0, the
Hamiltonian operator HI does not depend on the time
and there is a stationary solution to the density matrix
equations of motion. So all the discussions which follows

is under the condition of three-photon resonance ω = 0.
The master equation of motion for the density operator in
the interaction picture can be written as

∂σ

∂t
=

1
i�

[HI , σ] + Λσ. (2)

For the atomic system under study, by expanding equa-
tion (2) in terms of newly defined density matrix ele-
ments ρ12 = σ12e

iϕm , ρ13 = σ13e
−iϕ1 , ρ14 = σ14e

i(ϕp−ϕ1),
ρ23 = σ23e

−iϕ2 , ρ24 = σ24e
i(ϕm+ϕp−ϕ1), ρ34 = σ34e

iϕp ,
ρii = σii, ρ∗ij = ρ∗ji and Φ = ϕm + ϕ2 − ϕ1, we can easily
obtain the following equations of density matrix

∂ρ23

∂t
= [−γ23 + iδ3] ρ23 + iΩ2 [ρ33 − ρ22]

− iΩ1ρ21e
−iΦ + iΩmρ13e

−iΦ − iΩpρ24e
−iΦ

∂ρ13

∂t
= [−γ13 + iδ1] ρ13 + iΩ1 [ρ33 − ρ11]

+ iΩmρ23e
iΦ − iΩ2ρ12e

iΦ − iΩpρ14

∂ρ33

∂t
= iΩ1 [ρ13 − ρ31] + iΩ2 [ρ23 − ρ32]

+ iΩp [ρ43 − ρ34] − 3Γ3ρ33 + Λρ44

∂ρ12

∂t
= [i (δ1 − δ2)] ρ12 + iΩm [ρ22 − ρ11]

+ iΩ1ρ32e
−iΦ − iΩ2ρ13e

−iΦ

∂ρ24

∂t
= [−γ24 + i (δ2 − δp)] ρ24 + iΩmρ14

+ iΩ2ρ34e
iΦ − iΩpρ23e

iΦ

∂ρ34

∂t
= [−γ34 − iδp] ρ34 + iΩp [ρ44 − ρ33]

+ iΩ1ρ14 + iΩ2ρ24e
−iΦ

∂ρ14

∂t
= [−γ14 + i (δ1 − δp)] ρ14 + iΩmρ24

+ iΩ1ρ34 − iΩpρ13

∂ρ22

∂t
= iΩm [ρ12 − ρ21] + iΩ2 [ρ32 − ρ23] + Γ3ρ33

∂ρ11

∂t
= iΩm [ρ21 − ρ12] + iΩ1 [ρ31 − ρ13] + Γ3ρ33

ρ11+ρ22 + ρ33 + ρ44 = 1
ρij = ρ∗ji (3)

here γij is the coherent decay rate corresponding to tran-
sition |i〉 ↔ |j〉, and in the radiative limit of no dephas-
ing collisions, it can be given by γ14 = γ24 = Λ/2 and
γ13 = γ23 = γ34 = (3Γ3 + Λ)/2.

In this paper, we are mainly interested in the phe-
nomena of symmetric light amplification with three gain
peaks and gain equalization. By numerical calculation, we
find that the phenomena can be observed just on the ba-
sis of realization of symmetric double-EIT. Xue et al. [11]
pointed out that the symmetric double-EIT can be ob-
tained only when two conditions are fulfilled: the closed
interaction phase Φ = π/2 and the full-resonance condi-
tion δ1 = δ2 = δm = 0. So in the following calculation, we
set Φ = π/2 and δ1 = δ2 = δm = 0.
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Fig. 2. The gain (absorption) coefficient Im(χ) as a function of (a) the incoherent pumping Λ and (b) the Rabi frequency Ω
when the probe detuning δp = 0 is illustrated. The parameters are: (a) Ω1 = Ω2 = Ωm = 20 (b) Λ = 20. Other parameters are:
Γ3 = 1, δ1 = δ2 = δm = 0, Φ = π/2.

Solving equations (3) for ρ34 to the first order of the
probe laser field Ωp, we find

ρ
(1)
43

Ωp
=

[(−δp − iγ24)Ω1 − iΩ2Ωm] ρ(0)
31

A

+
[(−δp − iγ14) Ω2 + iΩ1Ωm] ρ(0)

32

A

+

[
Ω2

m + γ14γ24 − iδpγ24 − iδpγ14 − δ2
p

] (
ρ
(0)
33 − ρ

(0)
44

)

A

A =(δp + iγ14) (δp + iγ24) (δp + iγ34) − (δp + iγ24)Ω2
1

− (δp + iγ14)Ω2
2 − (δp + iγ34)Ω2

m. (4)

In the zeroth order for the probe laser field, the coherence
created by the coupling fields can be given as:

iρ
(0)
31 =

Ω1 (γ12Ωm − Ω1Ω2)
(
ρ
(0)
33 − ρ

(0)
11

)

γ12γ13γ23 + γ13Ω2
1 + γ23Ω2

2 + γ12Ω2
m

+
Ωm (γ13Ω1 + ΩmΩ2)

(
ρ
(0)
22 − ρ

(0)
11

)

γ12γ13γ23 + γ13Ω2
1 + γ23Ω2

2 + γ12Ω2
m

+
Ω2

(
γ12γ13 + Ω2

2

) (
ρ
(0)
33 − ρ

(0)
22

)

γ12γ13γ23 + γ13Ω2
1 + γ23Ω2

2 + γ12Ω2
m

(5)

iρ
(0)
32 =

Ω1

(
γ12γ23 + Ω2

1

) (
ρ
(0)
33 − ρ

(0)
11

)

γ12γ13γ23 + γ13Ω2
1 + γ23Ω2

2 + γ12Ω2
m

+
Ωm (γ23Ω2 − ΩmΩ1)

(
ρ
(0)
22 − ρ

(0)
11

)

γ12γ13γ23 + γ13Ω2
1 + γ23Ω2

2 + γ12Ω2
m

−
Ω2 (γ12Ωm + Ω1Ω2)

(
ρ
(0)
33 − ρ

(0)
22

)

γ12γ13γ23 + γ13Ω2
1 + γ23Ω2

2 + γ12Ω2
m

. (6)

We do not quote the analytical solution of ρii

(i = 1, 2, 3, 4) as it is a complicated expression. From equa-
tions (5) and (6), obviously the real part of the expression

ρ
(0)
3i (i = 1, 2) is zero. Then the gain (absorption) coeffi-

cient of the probe laser field can be written as:

Im (χ) = G1 + G2 + G3

G3 = −Nµ2
43

2ε0

i (c1δp + c2 (γ14Ω2 + Ω1Ωm)) ρ
(0)
32

c22 − c12

G2 = −Nµ2
43

2ε0

i (c1δp + c2 (γ24Ω1 + ΩmΩ2)) ρ
(0)
31

c22 − c12

G1 =
Nµ2

43

2ε0

×
(
c1δp (γ14+γ24)+c2

(
Ω2

m−δ2
p+γ14γ24

)) (
ρ
(0)
33 − ρ

(0)
44

)

c22 − c12

(7)

where

c1 = δ3
p − γ14γ24δp − (γ14 + γ24) γ34δp

− δp

(
Ω2

1 + Ω2
2 + Ω2

m

)

c2 = γ34

(
δ2
p − γ14γ24

)
+ δ2

p (γ14 + γ24)

− (
γ24Ω

2
1 + γ34Ω

2
m + γ14Ω

2
2

)
.

In the following numerical calculation, for simplicity, we
set Nµ2

43/2ε0 = 1 and all the parameters are scaled by Γ3.

3 Theoretical analysis and calculation

The gain (absorption) coefficient Im (χ) can be obtained
numerically from equation (7). In our notation, Im (χ) > 0
means that the probe laser field is amplified. In the fol-
lowing discussion, we numerically debate the properties
of light amplification with three gain peaks and gain
equalization.

Let us consider the simple case Ω1 = Ω2 = Ωm = Ω.
As with the light amplification, the most important term
that we are interested in is the maximum gain and the
corresponding condition. Im (χ) as a function of the inco-
herent pumping Λ (the strength of coupling laser fields Ω)
when the probe detuning δp = 0 is illustrated in Figure 2a
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Fig. 3. Under the condition of Ω1 = Ω2 = Ωm = 20, gain
coefficient Im(χ) vs. the probe detuning δp for different values
of incoherent pumping Λ is demonstrated. The parameters are:
the dashed curve Λ = 4, the dotted curve Λ = 20 and the
solid curve Λ = 48. Other parameters are the same as those in
Figure 2.

(Fig. 2b). The figures show that gain can be observed
with a small value of incoherent pumping Λ or coupling
Rabi frequency Ω. We also know that, with the increase
of Λ (Ω), the gain goes up to the maximum value rapidly
and then decreases and approaches zero (a small value) at
the large value of Λ (Ω). This means the maximum gain
does not require a large value of incoherent pumping Λ
and coupling Rabi frequency Ω. The manifest difference
between Figures 2a and 2b is the value of the gain coeffi-
cient when Λ (Ω) is large. This can be explained as follows.
When Λ � Ω, conventional light amplification plays an
important role in the probe gain. The population is totally
pumped to level |3〉 and then localized in the metastable
level |1〉 and so the coherence between levels |3〉 and |4〉 is
about zero as shown in Figure 2a. But when Ω � Λ, the
main contribution of probe gain comes from the Raman
gain due to the effects of atomic coherence ρ31 and ρ32.

In this paper, we are especially interested in the sym-
metric light amplification and want to know whether the
gain equalization can be observed in such a system. The
gain coefficient Im (χ) vs. the probe detuning δp for differ-
ent values of Λ when the coupling Rabi frequency Ω = 10
is demonstrated in Figure 3a where the dashed curve,
the dotted curve and the solid curve correspond to the
conditions of Λ = 0.2Ω, Ω and 2.4Ω, respectively. As
shown by the dashed curve, with a small incoherent pump-
ing Λ = 0.2Ω = 4, we observe symmetric light ampli-
fication with three large gain peaks, which can be ex-
plained by the dressed-state mechanism. Under the action
of coherent laser fields, the upper level |3〉 is split into
three dressed-state levels |a〉, |b〉 and |c〉 and the corre-
sponding eigenvalues can be obtained as Ea = ω3 +

√
3Ω,

Eb = ω3 and Ec = ω3−
√

3Ω. Due to the effect of incoher-
ent pumping, the probe transition in three channels are
amplified and so we can get three symmetric light ampli-
fication and the frequency distance between the two next
gain peaks is equal to

√
3Ω.

With the increase of incoherent pumping Λ the sym-
metric light amplification still exists but the value of
gain peaks decreases as shown by the dotted curve in
Figure 3. When the incoherent pumping increases to a

Fig. 4. Gain coefficient Im(χ) as a function of the probe de-
tuning δp is represented. The parameters are: the dashed curve
Ω1 = Ω2 = 20, Ωm = 15 and Λ = 58 and the solid curve
Ω2 = Ωm = 20, Ω1 = 30 and Λ = 72. Other parameters are
the same as those in Figure 2.

value Λ = 2.4Ω = 48, we find that the symmetric light
amplification with three gain peaks degenerates into one
with an approximate gain equalization in a large frequency
region except a very small peak at the gain center. It is
well-known that a good gain equalization is required in
optical communication, so we need to eliminate the peak
at the gain center though it is small. By numerical calcula-
tion, as shown in Figure 4, we find that the small peak at
the gain center can be totally removed by either reducing
the microwave Rabi frequency (solid curve) or augmenting
the coupling Rabi frequency (dashed curve). Also by com-
paring the two curves, we find that with the increase of
coherent Rabi frequency (the solid curve), the frequency
region in which gain equalization can be observed is aug-
mented but the magnitude of the flat gain decreases.

From all discussions above, a conclusion can be made:
for a given coupling Rabi frequency, with the variation
of incoherent pumping Λ, two specific phenomena, sym-
metric light amplification with three gain peaks and gain
equalization, can be observed. If we want to obtain the
symmetric light amplification (gain equalization), a small
(large) incoherent pumping is required. Furthermore, we
are motivated to ask the following question: how can the
incoherent pumping and coherent Rabi frequency modify
the gain profile to get two distinct physical phenomena?

From equations (7), it is easy to see that the probe
gain originates from three terms: G1, G2 and G3, which
respectively represent the contributions of convential light
amplification ρ33 − ρ44, Raman gain ρ31 and ρ32. To un-
derstand the role of incoherent pumping on gain profile
more clearly, we plot Gi (i = 1, 2, 3) vs. probe detuning
δp in Figures 5a and 5b, respectively, corresponding to the
parameters Ω1 = Ω2 = Ωm = 20 and Λ = 4 (light ampli-
fication) and Ω1 = Ω2 = 20, Ωm = 15 and Λ = 58 (gain
equalization). With a small Λ as shown in Figure 5a, the
effects of the atomic coherence G2 (dashed curve corre-
sponding to 10G2) and G3 (dotted curve corresponding
to 10G3) are sufficiently small compared to the contribu-
tion from the conventional light amplification G1 (solid
curve) that they can be neglected, that is to say, the con-
ventional light amplification plays the most important role
in probe light amplification. With the increase of Λ, the
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Fig. 5. Gi (i = 1, 2, 3) vs. the probe detuning δp for two specific physical mechanisms: probe light amplification and gain
equalization, are depicted, in which the solid curve, the dashed curve and the dotted curve correspond to G1, 10G2 and 10G3
respectively. The parameters are: (a) Ω1 = Ω2 = Ωm = 20 and Λ = 4 (b) Ω1 = Ω2 = 20, Ωm = 15 and Λ = 58. Other
parameters are the same as those in Figure 2.

magnitude of Gi (i = 1, 2, 3) is decreased but the vari-
ation of G1 is greater than the variation of G2 and G3.
When Λ = 58, though the magnitude of G1 is still larger
than those of G2 and G3, the gain profiles of G1 can al-
ready be modified faintly by G2 and G3. In other words,
under the common action of conventional light amplifica-
tion and Raman gain, good gain equalization is obtained
but the magnitude and the frequency region of the gain
equalization is mainly determined by conventional light
amplification.

Now we know that the gain equalization can be ob-
tained on the basis of light amplification. But obviously
the light amplification can also be observed when Ωm = 0.
So we propose such a question: under the condition of
Ωm = 0, whether can we get gain equalization by vary-
ing the incoherent pumping Λ. If we can, which are the
details that make our study more advantageous? By nu-
merical calculation, as shown in Figure 6, we find that the
gain equalization can also be observed when Ωm = 0. But
compared with the solid curve in Figure 4, we find that
under the condition of Ωm = 0 to obtain gain equaliza-
tion a larger incoherent pumping is needed. By compar-
ization, we can also find that, due to the larger incoherent
pumping, the amplitude of the flat gain decreases and the
frequency region of the flat gain diminishes. Thus we can
confirm that: Although the model without the microwave
laser field is more easily achieved, the system with a closed
interaction contour has more advantages in actual prac-
tise.

4 Summary

In summary, we have analyzed the gain properties when an
incoherent pumping is applied in a four-level system with
a closed interaction contour. We not only observe the sym-
metric light amplification with three gain peaks but also
find a specific phenomenon: gain equalization. Zhang [9]
have also proposed a method to achieve gain equalization,
but it is obtained with assistant equipment: the probe
laser passes through three fibers and each time with differ-
ent applied laser fields, which is different from the scheme
we propose in this paper. We obtain the phenomenon by
making use of only a four-level system. We also analyzed

Fig. 6. Under the condition of Ωm = 0, gain coefficient
Im(χ) vs. the probe detuning δp is shown. The parameters
are: Ω1 = Ω2 = 20, Λ = 98 and Φ = 0. Other parameters are
the same as those in Figure 2.

the potential physical mechanism of the symmetric light
amplification with three gain peaks and the gain equaliza-
tion, and show that conventional light amplification is re-
sponsible for the probe light amplification but gain equal-
ization need a combined effect of both conventional light
amplification and stimulated Raman process. Finally, we
point out the advantage of this model by comparison with
the system without the microwave laser field.

The authors thank the National Natural Science Foundation
of China for support under the grant number 10334010.
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